4 research outputs found

    A Novel Design to Minimise the Energy Consumption and Node Traversing in Blockchain Over Cloud Using Ensemble Cuckoo Model

    Get PDF
    The article outlines the Blockchain’s behavioral model for services. Their reliability is proven through the use of experimental evidence. The authors highlight the major technical aspects and characteristics that are associated with the transmission of data through the network. The authors define the scheme for the network, which works with blockchain transactions, and the relationship between network characteristics on parameters used by the application. They examine the use of this model to identification of the blockchain service and also the likelihood of existing security mechanisms that are based on the technology being bypassed. Additionally, the article provides guidelines to conceal the Blockchain's traffic profile to make it more difficult for its detection in the information network. This study offers a thorough analysis of blockchain-based trust models applied to cloud computing. The paper highlights the challenges that remain unsolved and offers suggestions for future studies in the area based on new cloud-edge trust management system and double-blockchain structure, which is a cloud-based transaction model. The paper also identifies the existing challenges and offers suggestions for future studies in the area based on new cloud-edge trust management system and double-blockchain structure, which is a cloud-based transaction model. The flow of the network will be supported by models that are enhanced by cuckoo to frame the perfect network transform of data from one point to cluster, or alternatively

    Hybrid Logical Security Framework for Privacy Preservation in the Green Internet of Things

    No full text
    Lately, the Internet of Things (IoT) has opened up new opportunities to business and enterprises; however, the cost of providing security and privacy best practices is preventing numerous organizations from adopting this innovation. With the proliferation of connecting devices in IoT, significant increases have been recorded in energy use, harmful contamination and e-waste. A new paradigm of green IoT is aimed at designing environmentally friendly protocols by reducing the carbon impact and promote efficient techniques for energy use. There is a consistent effort of designing distinctive security structures to address vulnerabilities and attacks. However, most of the existing schemes are not energy efficient. To bridge the gap, we propose the hybrid logical security framework (HLSF), which offers authentication and data confidentiality in IoT. HLSF uses a lightweight cryptographic mechanism for unique authentication. It enhances the level of security and provides better network functionalities using energy-efficient schemes. With extensive simulation, we compare HLSF with two existing popular security schemes, namely, constrained application protocol (CoAP) and object security architecture for IoT (OSCAR). The result shows that HLSF outperforms CoAP and OSCAR in terms of throughput with low computational, storage and energy overhead, even in the presence of attackers
    corecore